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P R E D I C T I N G  P I P E  B R E A K S : 

Desktop Scoring, 
Advanced Statistics 

(LEYP), and  
Machine Learning

Annie Vanrenterghem Raven and Kevin V. Campanella

Key Takeaways

Using desktop scoring to determine the likelihood of failure of water 
pipes should be phased out and replaced with advanced analytics, 

particularly machine learning.

More accurate break predictions will lead to better estimates of how 
much to spend on pipe replacement and which pipes to replace.

Utilities should integrate information about abandoned pipes and 
breaks into failure forecasting, including machine learning models.

Some data issues can be cost-efficiently rectified using machine 
learning and automated algorithms.
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Maintaining the physical integrity of drink-
ing water systems and maintaining 
records to support decisions about reha-
bilitation and replacement (R&R) require 

continuous attention and significant resources. Deferring 
R&R or making inappropriate R&R decisions can lead to 
enormous costs down the road and/or an abundance of 
costly breaks (and associated interruptions in service). In 
2020, according to the Report Card for America’s 
Infrastructure, published by the American Society of 
Civil Engineers (ASCE), the R&R of US water pipes (trans-
mission and distribution) was expected to cost approxi-
mately $66 billion per year. Figure 1 shows the key contri-
butions to the overall R&R needs for water pipes in the 
United States. Since 2020, costs have increased substan-
tially as a result of supply chain constraints and rising 
inflation. Furthermore, the country has experienced 
extreme weather events that also have led to premature 
failures and additional R&R expenses.

Taking appropriate risk-based R&R actions results 
in better-scheduled pipe replacements, significant cost 
savings, and more reliable service. This approach re-
quires that the likelihood of failure (LOF) of each pipe 
be assessed. There are several alternatives to generate 
that assessment. 

For more accurate results, a pipe coupon can be ana-
lyzed in a laboratory, or the pipe can be inspected using 
a noninvasive technology. However, those two options 
come at a cost proportional to the number of coupons  
analyzed or miles of pipe inspected. At $30,000 per  
mile, inspecting the length of pipes slated every year for 
replacement (22,000 miles) would amount to $660 million 
per year. Alternatively, analyzing a utility’s existing pipe 
and break data is a cost-effective option as it doesn’t depend 
on the amount of data or miles of pipes. More amounts of 
useful data make analytics more accurate. It can serve as a 
screening step that identifies which pipes should be  
inspected in view of validating a decision to replace.   

Rehabilitation and Replacement (R&R) of US Water Pipes in 2020

54,000 utilitiesc

2,200,000 milesa of buried water pipes

$20,000–$40,000 
to inspect 1 mile of water pipe

$66,000,000,000d

R&R cost per year

22,000 milesa

of water pipes need to 
be replaced every year

$1,000,000–$6,000,000 
to replace 1 mile of water pipe

(@$3,000,000 average cost/mile)

PPhhyyssiiccaall  CCoonnddiittiioonn
850 breaks/dayb

Environmental conditions
Extreme weather events

Figure 1

aSource: American Society of Civil Engineers, Report Card for America’s Infrastructure 2020; 1% replacement rate equates to 22,000 miles of R&R  
 per year.  
bSource: Uni-Bell PVC Pipe Association, Water Main Break Clock: https://watermainbreakclock.com 
cSource: US Environmental Protection Agency, 2008: Factoids: Drinking Water and Ground Water Statistics for 2007.
d22,000 miles of R&R per year × $3,000,000 (average cost of R&R for 1 mile of pipe) = $66,000,000,000 cost of R&R per year.
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Data analysis can include spatial or desktop scoring 
using expert knowledge as well as advanced analytical 
approaches that include multivariable regression, or ma-
chine learning. Desktop scoring, a form of multicriteria 
analysis that typically results in assigning an LOF score 
of 1 to 5, is still frequently used. But if utility-specific pipe 
and break data are available at the pipe level, as is now 
common, advanced analytics will yield far more accurate 
and granular LOF results.

If it can respond to the specificity of pipe and break data, 
machine learning is particularly attractive because of its 
superior failure predictive capacity, analytical flexibility, 
and simplicity of use. Understanding machine learning, and 
therefore its adoption, is still limited in the water indus-
try, which traditionally relies on tangible and field-based 
technical knowledge. Many water professionals are not yet 
comfortable with black box analytics, doubt the quality of 
their pipe and break data (including the ability to improve 
it at low cost), and may be reluctant to change long-held 
practices. To address these concerns, this article com-
pares traditional desktop scoring with advanced analytics 
and presents limitations, capacities, and data issues and 
requirements, as well as remedies to improve data quali-
ty. We also list features prospective users should look for 

when considering machine learning to assess the quality of 
a break prediction model. In the next section, we first show 
the type of R&R plan optimization that can be obtained only 
with LOF scores generated through advanced analytics.

Benefits of Advanced Analytics for Long-Term 
Planning
Advanced analytics—meaning approaches that go fur-
ther than simply assigning LOF scores to pipes—allow 
utilities to improve their R&R planning capability, accu-
racy, and reliability while saving time and money. The 
following case study highlights a northeastern utility, 
with close to 2,100 miles of pipes (two-thirds cast iron 
and one-third ductile iron) with an average age of 57 
years and a break rate of 0.200 breaks/mile/year.  

Scenario 1: Length and Resulting Break Rate by Year of R&R and Material
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Figure 2

CI—cast iron, DI—ductile iron, R&R—rehabilitation and replacement 
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Machine learning is particularly 
attractive because of its superior 
failure predictive capacity, analytical 
flexibility, and simplicity of use.
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If the utility’s capital improvement plan (CIP) im-
posed an R&R rate of 1% per year (or 21 miles), this 
assumes its pipes would stay in service on average for 
100 years. A machine learning–powered break forecast-
ing model was used to estimate the LOF of each pipe 
for each year in the future. The future break rate in the 
absence of R&R was also projected to be 0.273 breaks/
mile/year in 10 years, when the average pipe age would 
be 67, and 0.656 breaks/mile/year by 2065, when the 
average pipe would be 99 years old.  

The resulting break rate after applying a 1% R&R rate 
at a cost of $63 million/year (21 miles × $3 million/mile), 
or $2.709 billion by 2065, was then estimated. R&R was 
made following two rules:

 • Seventy percent of the annual R&R length includes 
pipes with the worst LOF, while 30% of the R&R length 
occurs for reasons other than physical condition.

 • Replacement pipes are accounted for when estimat-
ing the resulting break rate; they are assumed to be 
more resilient than the existing pipes, with a break 
rate of 0.200 breaks/mile/year by the age of 85. 

Figure 2 shows the break rate and the length of pipes 
replaced over time. Specific pipes are identified for each 
year (not just length to be replaced).

Systematically replacing 21 miles a year (1%) 
rapidly reduces the break rate beyond the utility’s 
objective of maintaining the current break rate 

around 0.200 breaks/mile/year. This means that 
pipe replacement could be less aggressive while  
saving resources.

Scenario 2, shown in Figure 3, was proposed as an 
alternative to the replacement plan in Figure 2. In this 
case, the utility achieves its goal starting at 7 miles of 
annual pipeline R&R (the current level), ramps up to 
19 miles by 2045, and then drops to around 10 miles 
of R&R per year by 2065. The total cost with this ap-
proach is $1.767 billion, which saves approximately 
$942 million (35%) compared with Scenario 1. This 
kind of CIP optimization cannot be conducted with 
LOF scores generated through desktop scoring.

Desktop Scoring
Desktop scoring requires that the variables that define a 
pipe, its environment, and anything that could speed up 
pipe degradation be first identified. Important informa-
tion is needed:

 • Pipe material, diameter, length
 • Date of installation/abandonment
 • Break history (number, date, cause)
 • Soil conditions
 • Operational conditions (e.g., pressure, anti-corrosion 
measures)

 • Local conditions like traffic, groundwater, stray cur-
rent, proximity to other infrastructure

Scenario 2: Length and Resulting Break Rate by Year of R&R and Material
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Figure 3

CI—cast iron, DI—ductile iron, R&R—rehabilitation and replacement 
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Furthermore, desktop scoring requires assigning values to 
these and other variables; each value is given a correspond-
ing score (s). A weight (w) is finally assigned to each variable 
proportionally to fully characterize any degradation.

For each pipe, the score that corresponds to the value j 
of a variable i (sij) is multiplied by the weight that variable 
carries (wi), and the LOF score of that pipe is the sum of 
the (sij × wi) entities for all the variables. 

For example, take variables “material” and “soil.” 
Material can take two possible values: cast iron (CI, score 
of 2) or ductile iron (DI, score of 1); the weight is 1. Soil can 
take the values “good” (score of 1) or “bad” (score of 2); the 
weight is 2. The LOF for those two pipes is

 • pipe 1 (DI, bad soil); LOF = 1 × 1 + 2 × 2 = 5 and
 • pipe 2 (CI, good soil); LOF = 1 × 2 + 2 × 1 = 4.

Characterization and scoring are typically done in 
Excel spreadsheets, using data from geographic informa-
tion system (GIS) shape files, or directly in GIS.  

The fundamental problem with desktop scoring is its 
subjectivity in assigning weights and scores, which can 
lead to LOF scores that are inaccurate. In the example, is 
a CI pipe (s = 2) two times more likely to break than a DI 
pipe (s = 1)? Does soil (w = 2) really contribute to pipe deg-
radation twice as much as material (w = 1)? Is a DI pipe in 
bad soil (LOF score of 5) 25% more likely to break than a 
CI pipe in good soil (LOF score of 4)?

The interconnection between weights and values for 
different variables is another important consideration 
that cannot be addressed easily with desktop scoring. For 
example, the weight of soil may not be the same for CI or 
plastic, or a period of installation of 1970–1980 may yield 
different scores for two different materials (poor quality 
for material 1 at that time, but good quality for material 2). 
As a result, different scoring equations/models may be 
required for each value of certain variables, which makes 
it difficult to develop accurate relative LOF scores. A pipe 
with an overall score of 2 based on one equation could 
actually be in worse condition than a pipe with a score of 
3 that was evaluated using another equation. 

Regardless of how well they understand their system, 
it can be difficult for users to decide which variables 
should be granted their own model and equation, and 
how the output results from those equations compare. 
Doing this correctly requires careful statistical tech-
niques that cannot be applied manually. Advanced an-
alytics are the tools of choice that automatically tackle 
those scoring challenges.

Scoring presents an advantage: it allows users to 
estimate LOF scores when break data are not available 
at the pipe level. In these cases, there is no other option 
but to rely on expert opinions and experience. However, 
if each break is properly assigned to the pipe on which it 

occurred, the LOF of all the pipes can be more precisely 
predicted using advanced analytics. The next section 
compares advanced analytics and desktop scoring.  
 
Advanced Analytics 
Two advanced analytical approaches are described here: 
machine learning and the multivariable model, linear 
extended Yule process (LEYP). LEYP was developed by 
IRSTEA (National Research Institute of Science and 
Technology for Environment and Agriculture), based in 
France. The variables identified previously as required for 
desktop scoring are also needed for advanced statistics, 
with the only difference being that each break must be spe-
cifically assigned to the pipe on which it occurred. Both 
approaches use built-in statistical techniques that auto-
matically identify the right weight and scores of each  

variable on the basis of the weights and scores of other vari-
ables. They then determine how pipes compare, alleviating 
the modeling difficulties encountered with desktop scoring 
described in the previous section. This makes assigning 
LOF effortless and more accurate for the user once the 
model has been properly configured by the data scientist.

Machine learning is superior to LEYP not only because 
it can make slightly better predictions but also because 
it doesn’t need calibration by the user at each run. While 
a strong machine learning model must account for the 
specificity of pipe and break data, this is embedded in the 
machine learning software; a proper machine learning 
model is internally programmed to automatically make 
the kind of calibration choices that a user must make 
manually with LEYP for every model run. Specifically, 
LEYP calibration requires preliminary descriptive sta-
tistics to ensure that mathematical conditions are met 
for certain variables, especially quantitative continuous 
variables like year of installation and diameter. 
 
Comparing Advanced Analytics and  
Desktop Scoring
Desktop scoring generates a relative LOF score (not a 
probability of failure) for each pipe currently (not in 

Scoring presents an advantage:  
it allows users to estimate LOF 
scores when break data are not 
available at the pipe level. 
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the future). The result from LEYP or a machine learn-
ing model is a probability of failure translated into a 
predicted break number for each year in the future 
which, as seen in the case study, is valuable when sim-
ulating long-term R&R scenarios. Annual estimates 
consist of how many breaks will occur with various 
R&R investment levels (including “do nothing,” cur-
rent CIP, or any other replacement strategy). Seeing 
the effects on systemwide break rate and risk allows 
the utility to determine appropriate investments over 
a planning horizon. Desktop scoring doesn’t provide 
this level of forecasting or guidance on appropriate 
long-term investment levels.  

Future breaks are forecast by observing the past 
behavior of all the pipes that have experienced degrada-
tion, which includes pipes in service as well as those that 
have been abandoned. Properly configured advanced 
failure forecasting models allow accounting for data 
from abandoned pipes, which greatly improves their 
predictive capacity and accuracy, especially given that 
abandoned pipes tend to have experienced more breaks. 

This is not an option with desktop scoring. While in-
cluding abandoned pipes may have little consequence 
for systems that have not yet undertaken much R&R, the 
importance of abandoned pipes will only grow as the 
percentage of R&R increases.

Desktop scoring often ends up assigning the same sim-
ple 1–5 scores to many pipes, which makes prioritization 
of pipe inspections or replacements difficult and poten-
tially inaccurate. LOF scores from advanced analytical 
approaches come as continuous digital values, probabil-
ity of failure, or predicted break number, offering much 
richer granularity and analytical potential.

With desktop scoring or LEYP, the value of a vari-
able must be known for every single pipe. For example, 
soil testing results cannot be introduced unless they 
are available for each pipe, which is rarely the case. In 
comparison, machine learning can draw inferences from 
incomplete information. 

Models developed with data coming solely from the 
utility being analyzed tend to yield more accurate pre-
dictions (provided the data are available in sufficient 
quantity and quality) than “big models,” where data from 
other utilities are added. However, if that utility’s data 
quality is poor or insufficient, machine learning can (the-
oretically) “borrow” data from other utilities as a tempo-
rary measure while data from the utility being analyzed 
improves. This is not possible with desktop scoring or 
LEYP. The “big model” does require that a value attribut-
ed to a variable at one utility represents the same thing at 
another utility. Finally, as described in the next section, 
predictions of future breaks are far superior with ad-
vanced analytics, compared with desktop scoring. 

Model Validation 
Whether utilities can trust a model’s predictions rests on vali-
dating model outputs with actual breaks. Examples in the 
following sections show validation results for two systems of 
different size and condition for two analytical approaches 
(desktop scoring, LEYP, and/or machine learning). 

System 1: Large System With Medium Break Rate
1,490 Miles of CI Pipes and 714 Miles of DI Pipes

This study took place in 2022, with break data from 
2002–2021; 2002–2019 breaks were used to generate a 
predicted LOF score with desktop scoring and machine 
learning for each pipe in 2020. The pipes were ranked 
from highest to lowest LOF. We then calculated the per-
centage of the total 2020–2021 actual breaks that would 
have been avoided had 1%, 5%, or 10% of those pipes 
(worst LOF first) been replaced by 2020. The higher the 
percentage of breaks avoided during the validation 
period, the more accurate the model. 

Table 1 shows the validation results obtained with desk-
top scoring and machine learning for System 1. As shown in 
Table 1, if the top 5% of worst pipes, as ranked by their desk-
top scoring LOF, had been replaced, 19.4% of the 2020–2021 
breaks would have been avoided. However, if ranked with 
machine learning using the 2020 predicted break number 
(PBN), that percentage becomes 79.3%. For the top 10% of 
worst pipes, the percentage avoided with desktop scoring 
was 45.2%, while for machine learning it was 84.9%. 

These results indicate that the performance of the 
machine learning model was excellent, and it was 
almost two to four times better than with desktop 
scoring (depending on the percentage of pipes target-
ed for replacement).
 
System 2: Very Large System With High Break Rate
2,457.7 Miles of CI Pipes and 2,511.7 Miles of DI Pipes

This study took place in 2021, with 2005–2020 break 

Regardless of the analytical 
approach, the quality of the results 
depends on the quality of the initial 
data and the model’s calibration.
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data. 2005–2018 breaks were used 
to predict LOF scores for 2019, and 
these results were compared with 
the actual 2019–2020 breaks. 

Table 2 shows the validation 
results obtained with desktop 
scoring, LEYP, and machine learn-
ing. In this case, a LEYP model 
has to be created for each materi-
al, so to make valid comparisons, 
the desktop scoring and machine 
learning models were also validat-
ed separately for each material. 

Results in Table 2 show that 
advanced analytics yield much 
better results than desktop scor-
ing. The scale of the improvement 
depends on the percentage of 
pipes replaced, the material, and 
the approach. For this water sys-
tem, CI pipes constitute a cohort 
for which predictions are more 
difficult to make regardless of 
the approach, indicating that the 
data need further improvement. 
Even for that rather weak cohort, 
results with advanced analytics 
are more than six times better at 
5% replacement, and five times 
better at 10% replacement, than 
with desktop scoring.

These examples show that 
advanced analytics have a much 
higher failure forecasting capacity 
than desktop scoring, which is to 
be expected given the limitations 
of the desktop approach. Machine 
learning performed slightly better than LEYP, but the cal-
ibration requirements are much lighter. Machine learn-
ing is therefore a better option. 

Data Issues and Remedies
Regardless of the analytical approach, the quality of fail-
ure forecasting results depends on the quality of the ini-
tial data and the model’s calibration. As described in the 
following sections, data issues may be the result of inci-
dental human errors or faulty data recording and man-
agement processes.

Incidental Data Issues
Incidental data issues include missing, illogical, and 
incoherent values. These issues tend to be isolated, 

resulting mainly from incidental human errors or lack of 
consistent record keeping and data management. 
Because these issues are not the result of a faulty process, 
once they are corrected, the issues should be gone.

Identifying these issues is straightforward for miss-
ing or illogical values; for example, a date of break or of 
abandonment cannot be prior to a date of installation. 
In addition, analyzing data trends helps identify outliers. 
For example, as seen in Figure 4, which shows the num-
ber and length of pipes based on the year of installation 
at System 2, most DI pipes were installed after 1976. The 
utility flagged DI pipes with recorded year of installation 
prior to that year (some as early as 1915). Issues such as 
these can be quickly identified using an automated tool 
with an extensive library of known issues.

System 1: Model Validation Based on Breaks 
Avoided by All Pipes Replaced

Table 1

LEYP—linear extended Yule process, LOF—likelihood of failure

All pipes
% replaced

Model Type: % Breaks Avoided (Worst LOF First), 2020–2021

Desktop Scoring LEYP Machine Learning

1 17.8 NA 30.6

5 19.4 NA 79.3

10 45.2 NA 84.9

System 2: Model Validation Based on Breaks 
Avoided by DI/CI Pipes Replaced

Table 2

CI—cast iron, DI—ductile iron, LEYP—linear extended Yule process, LOF—likelihood 
of failure

The cells under each model type contain the percentage of breaks avoided for  
(1) DI pipes and (2) CI pipes.

All pipes
% replaced

Model Type: % Breaks Avoided (Worst LOF First), 2019–2020

Desktop Scoring LEYP Machine Learning

1 0.6/1.1 34.0/12.1 44.2/15.3

5 12.2/5.9 54.5/35.7 63.5/38.1

10 20.2/9.2 69.4/52.0 72.0/55.2
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Structural Data Issues 
Unlike incidental problems, structural data issues 
can be more complex, and if they are not fixed, errors 
will continue to surface even after existing issues 
have been cleaned up. Three main processes lead to 
structural issues: (1) failure to properly record aban-
doned pipes, (2) incorrectly linking breaks and pipes, 
and (3) failure to report in a computerized mainte-
nance management system (CMMS) changes of pipe 
identifications (IDs) occurring in GIS. Because of 

these structural issues, breaks may end up lost to the 
study or assigned to the wrong pipe.

The absence of abandoned pipe records or the 
improper management of IDs at the time a pipe or a 
portion of a pipe is replaced  results in  the loss to the 
study of the breaks that occurred on those pipes or 
their being assigned to the wrong pipe. If a utility has 
not undertaken much R&R, these issues may not have 
had much effect, but they will become more prominent 
as the rate of R&R increases.

If breaks were previously recorded in spreadsheets or 
paper reports, their location may be in the form of the 
nearby address, and breaks are later “geocoded” in GIS 
by associating them with nearby pipe IDs. Because this 
process is often automated, wrong assignments can be 
made, especially if many pipes are in the area or if the 
break occurred on a pipe that was later abandoned and 
wasn’t recorded. 

Pipe and break data needed for statistical studies are 
collected mostly in GIS or CMMS not designed for such 
statistical analyses. For example, a CMMS is a work order 
depository that tracks work orders—i.e., who worked on 
what, when, for how long, and at what cost. While a break 
may be associated in the CMMS with the ID of the broken 
pipe at the time of the break, the pipe ID often is not up-
dated in the CMMS if it evolves in GIS. 

The above issues are illustrated with the following 
example. Pipe 105 is 200 feet long. It experienced a break 
in 2010 that was recorded in the CMMS at that time. 
Imagine that, in 2015, in the GIS, the ID of that pipe (105) 
became 106 as the result of a change in endpoints (no 
physical change). However, the break remained associ-
ated with pipe 105 in the CMMS, but that ID no longer 
exists in GIS. Therefore, the break is lost to the study. Or, 
in 2015, 100 feet of pipe 105 (the section that had a break 
in 2010) was replaced with a new material; that 100-foot 
section of pipe is a new GIS object that was given the 
recycled ID of 105; the remaining 100 feet was assigned a 
new ID, 106. The break remains associated in the CMMS 
with pipe 105, which exists in the GIS but is not the actual 
pipe that experienced the break. The break is assigned to 
the wrong pipe.

Number and Length of Pipes by Year of Installation
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Figure 4

CI—cast iron, DI—ductile iron, R&R—rehabilitation and replacement 
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Unlike incidental problems, structural 
data issues can be more complex, 
and if they are not fixed, errors will 
continue to surface.
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Resolving Data Issues
While incidental issues can be 
corrected one at a time by looking 
at the map or consulting source 
documents (if available), this is 
time-consuming, especially for 
systems that have a high percent-
age of data issues. To save time 
and resources, automated reme-
dies based on statistical and spa-
tial considerations using machine 
learning may be considered. 

For example, returning to 
System 1, 2% of the length of pipe 
was missing material informa-
tion, 4.5% did not have a year of 
installation, and 0.02% was not 
assigned a diameter. A machine 

learning data-cleaning module was used to deter-
mine those missing values. Model validation relied 
on picking 20% of the pipes that were not missing 
any information, deliberately removing some of those 
values, then using the cleaning module to estimate 
what they actually were. The material was properly 
predicted for 98.3% of the sample; the average differ-
ence (absolute value) between actual and predicted 
values was 1.08 years for the year of installation and 
0.59 inches for the diameter. 

However, not all data cleaning consists of filling in miss-
ing values. Situations are often more complex and require 
that more advanced cleaning algorithms be developed af-
ter observing the data for error patterns. Abandoned pipes 
may need to be retrieved, but this cannot be automated 
in GIS. The most complex variable to flag as incoherent 
and ultimately restore is the year of installation because it 
must follow a certain logic:

 • Distribution pipes must typically emanate from a 
transmission pipe (unless there is a well).

 • Along the path from any distribution pipe to its trans-
mission line, the year of installation cannot increase 
(unless replacement occurred). 

For example, in Figure 5, pipe 102 could not have been 
installed in 1965 if pipe 103 was installed in 1961. Such 
logic does not apply if replacement has occurred.  

An algorithm (“pipedate”) was developed to identify 
the most likely path of any distribution pipe to a trans-
mission pipe, flag incoherence, and suggest coherent 
years of installation. It also identifies pipes that are likely 
replacement pipes and provides recommendations for 
the year of installation of the original abandoned pipe if 
that is missing.

Model Validation: Addressing Utility Concerns 
As they consider incorporating machine learning into 
their failure forecasting and physical condition assess-
ment programs, utility managers may want to consider 
several aspects pertaining to validation if they are to 
build trust in the results.

 • Has the machine learning model been compared with 
at least one other advanced statistical model? In this 
case, a simple regression model based solely on age 
does not constitute a valid basis for comparison, as it 
should be easily outperformed by machine learning 
given that age is not a significant failure forecasting 
factor. Comparison with multivariable LEYP model 
results is a better basis for validation. 

 • If the utility has its own LOF scores (from desktop 
scoring, for example) and breaks are assigned to 
pipes, can a simple validation technique (similar to 
the one described previously that can be easily run in 
Excel) be used to evaluate the scoring model’s predic-
tive capacity?

Transmission and Distribution Pipes: Material, Size, 
Year of Installation

Figure 5

CI—cast iron

Pipe 101
CI, 8 in., 1960

Pipe 102
CI, 8 in., 1961

Transmission
CI

24 in.,
1920

Pipe 103
CI, 8 in., 1961

Machine learning models require less 
calibration effort from the user and 
lead to less human error.
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 • Is the validation meaningful? It is recommended that 
the past break rate be evaluated before validation be-
cause it may be meaningless if the break rate during 
the test period is off trend. Figure 6 shows statistical 
results for a small system with approximately 100 
miles of DI pipes. The break rate spiked in 2019–2020 

as a result of operational changes. A validation model 
focusing on those years provides excellent (but mis-
leading) validation results given that there were many 
more breaks during those two years. 

 • Are the data used in the model representative? As 
mentioned previously, a model’s results are only as 

Length and Break Rate of Active Ductile-Iron Pipes by Year
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Output Results From Machine Learning, 2021 PBN

Table 3

CI—cast iron, DI—ductile iron, ID—identification, PBN—predicted break number

Pipe ID
Length
ft

Diameter
in. Material Date Installed 2021 PBN Breaks

201 888.8 8 CI 10/11/1972 0.0787 0

202 886.9 8 DI 1/1/1972 0.0318 0

203 37.3 8 CI 1/1/1915 0.0022 0

204 233.0 8 CI 1/1/1915 0.0208 0

205 96.2 8 CI 1/1/1938 0.2326 2

206 96.0 8 CI 1/1/1938 0.0069 0
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good as the initial data. Utilities must ask themselves 
how trustworthy results are if they are based on, for 
example, 80% of the pipes and 50% of the breaks 
because the remaining data have various issues. 
Before any modeling project, the initial data should 
be thoroughly reviewed, and any issues should be 
identified and corrected, potentially taking advantage 
of automated processes to do this. 

 • Do results make sense when tested against simple 
descriptive statistics? Machine learning allows for mul-
tiple connections the human brain cannot follow, but 
the black box results should make sense when exam-
ined through the lens of simple descriptive statistics.

 • To illustrate this point, we ran the following exercise 
with results from System 2: we compared the model 
output results (PBNs) of a series of two pipes with 
similar values for all variables but one, focusing on 
material for pipes 201 and 202 (they are both about 
867 feet long, 8 inches in diameter, installed in 1972, 
with no previous breaks; one is CI, one DI), length for 
pipes 203 and 204, and number of breaks for pipes 205 
and 206. This information is shown in Table 3, along 
with the PBN of each pipe for 2021.

Intuitively, we would expect a pipe that belongs to the 
group with a higher break rate, or that is longer, or has 
more historical breaks to have a higher PBN. Here, for 
example the PBN of CI pipe 201 (0.0787) is 2.5 times the 
PBN of DI pipe 202 (0.0318). This is to be expected given 
that the break rate (yearly average) of CI 8-inch pipes 
installed in 1972 had been previously found to be 0.671 
breaks/mile/year, 1.3 times the break rate of similar 
DI pipes (0.504). Pipe 204 is more than six times longer 
than pipe 203, while the PBN is 9.5 times larger. The 
pipe that broke twice (205) has a PBN that is 33 times 
the PBN of the pipe that has had no break (206); this is 
also to be expected as the number of previous breaks is 
the most important predictive break factor. PBN results 
generated by machine learning must make sense when 
tested against simple statistics. 

The Future of Pipe Breaks Prediction
This article has shown that desktop scoring has signifi-
cant limitations as a tool to predict future breaks. Unlike 
desktop scoring, advanced analytics do not require any 
subjective choices; they yield excellent predictive results 
using utility-specific pipe and break data that in general 
are readily available or easily obtained.

Machine learning models also require less calibration 
effort from the user and lead to less human error. They 
present the greatest opportunity to save utilities money 
by creating a proactive pipe replacement plan that identi-
fies the right pipes to replace at the right time. 

Regardless of the approach, data quality is essential. 
Any issues with data quality must be identified and 
corrected, and that effort can be substantially stream-
lined by using automated tools also powered by machine 
learning. The processes leading to collecting and manag-
ing pipe and break data, especially abandoned pipes, may 
need to be restructured. Ideally, CMMS tools will add 
new features to better serve high-level analytics, and they 
will enhance the role those tools play in R&R planning. 

Simple but rigorous descriptive statistics help interpret and 
validate what are still often perceived as black box results.  
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Pipe ID
Length
ft

Diameter
in. Material Date Installed 2021 PBN Breaks

201 888.8 8 CI 10/11/1972 0.0787 0

202 886.9 8 DI 1/1/1972 0.0318 0

203 37.3 8 CI 1/1/1915 0.0022 0

204 233.0 8 CI 1/1/1915 0.0208 0

205 96.2 8 CI 1/1/1938 0.2326 2

206 96.0 8 CI 1/1/1938 0.0069 0

Advanced analytics do not require 
any subjective choices; they yield 
excellent predictive results using 
utility-specific pipe and break data 
that in general are readily available 
or easily obtained.
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